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LETTER TO THE EDITOR 

Microscopical analysis of the non-dissipative force on a line 
vortex in a superconductor 

Frank Gaitan 
International Centre for Theoretical Physics. W Box 586, 34100 Trieste. Italy 

Received 26 January 1995 

Abstract. A microscopical analysis of the non-dissipative force Fd acting on a line vortex 
in a type41 superconductor a t ~ T  = 0 is given. All the work presented assumes a charged BCS 
superconductor. We first examine the Berry phase induced in the BCS superconducting ground 
state by movement of the vortex and show how this phase enters into the hydrodynamic action 
Shrd of the superconducting condensate. Appropriate variation of Shyd gives Fnd and varialion 
of the Berry phase term is seen to contribute the Magnus or lih force of classical hydrodynamics 
to F,a. This analysis. based on lhe BCS ground State of B charged superconductor, confirms in 
detail the arguments of A0 and Thouless within the context of the BCS model. Our Beny phase, 
in the limit e -, 0, is seen lo reproduce the Berry phase determined by these authors for a neutral 
superfluid. We also provide a second, indepe,z&nt, determination of Fnd through a microscopic 
derivation af the continuity equation for the condensate linear momentum. This equalion yields 
the acceleration equation for the supenlow and shows that the vortex acts i l ~  a Sink fm the 
condensate linear momentum. The rate at which momentum is lost to the vortex determines 
Fnd in this second approach and the result obtained agrees identically with the previous Berry 
phase calculation. The Magnus force contribution to F.d is seen in both calculations to be a 
coosequence of the vortex topology and motion. 

Already, in the phenomenologicalfmacroscopic models of vortex dynamics in type-U 
superconductors due to Bardeen and Stephen (Bs) and NoziBres and Vinen (Nv) [l], the 
form of the non-dissipative force Fnd acting on the vortex is controversial. This force is 
the result of the vortex’s interaction wiih an applied magnetic field He,,, an electric field 
E due to the vortex motion, and the surrounding condensate of superconducting electrons. 
The disagreement centres on whether the vortex feels the lift or Magnus force of classical 
hydrodynamics as a consequence of its motion through the superconducting condensate. In 
the BS model, the non-dissipative force is due strictly to the Lorentz force pshw(v, x i ) /2  
while in the NV model, the Lorentz force is supplemented by the Magnus force -p,mKv, x i  
[2]. In a very interesting paper, A0 and Thouless [3] have returned to this controversy 
arguing that the correct form for F.d is the NV form. and that the Magnus force contribution 
to it is a manifestation of a Berry phase induced in the many-body ground state due to 
the vortex motion. They provide a calculation for a neutral superfluid and argue that the 
same scenario will also apply for a charged superconductor. Given that the BCS model 
of superconductivity provides a highly successful microscopic description of the dynamics 
of a charged superconductor, it would  be very interesting to see whether or not Fnd can 
be determined using this model of a charged superconductor (together with the starting 
assumptions common to BS and NV, see below). In this letter we report the results of 
two such calculations. A detailed presentation and discussion of these calculations will 
be reported elsewhere [4]. In the first calculation we determine Fnd by working with the 
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BCS superconducting ground state in the case where a vortex is present. This state is first 
constructed and the Berry phase induced in it by the vortex motion is determined. We 
then show how this Berry phase enters into the action describing the hydrodynamic degrees 
of freedom of the superconducting condensate. Variation of this action with respect to 
the vortex trajectory gives Fn,j and the result found is seen to take the NV form. In the 
second calculation we give a microscopic derivation of the acceleration equation for the 
superflow. Together with the expected contributions off the vortex due to spatial variation 
of the chemical potential, and the electric and magnetic fields present, we also find a 
singular term arising from the vortex topology which describes the disappearance of linear 
momentum into the vortex. The rate. at which this momentum is disappearing gives F.a 
and is found to agree identically with the result of the Berry phase calculation. We stress 
that the two calculations are independent of each other, and each shows that the Magnus 
force (contribution to Fnd) is a consequence of the vortex topology and motion, exactly as 
it is in classical hydrodynamics. 

We make use of the Bogoliubov equation to treat the superconducting dynamics. The 
gap function takes the form A(r) = Ao(r)exp[-i8] in the presence of a line vortex with 
winding number w = -I (in cylindrical coordinates (r, 8. z) centred on the vortex). As 
in the models of BS and NV, we: (i) assume T = 0; (i) will approximate the non-local 
character of BCS superconductivity by a local dynamics; (iii) assume Hc, < He,, << Ha so 
that vortex-vortex interactions can be ignored and attention can focus on a single vortex; 
(iv) assume a clean type-D. superconductor so that pinning effects can be ignored; and, (v) 
set h = m = c = 1 unless otherwise stated. The solutions of the Bogoliubov equation 
in the presence of a line vortex are well known [5J and can have positive and negative 
energies relative to the Fermi energy. The superconducting ground state is constructed by 
occupation of the negative-energy states. The charge conjugation degree of freedom for the 
two-component Nambu quasi-particle (NQP) is labelled Zs,, and the operator that creates a 
negativeenergy NQP is yn1 (where n labels the energy spectrum). 'Thus, the ground state in 
the presence of a vortex is 

y . ~  depends linearly on the (complex conjugate) of the components of the solutions of the 
Bogoliubov equation (U", u,J [SI. Adiabatic motion of the vortex generates a Berry phase 
[6] & in the solutions (U", U"). Consequently, y.1 inherits the phase -@,, which, from 
equation (I), causes the ground state to develop the Berry phase r = - C, 4". Because 
the electrons are electrically charged, one must use the gauge-invariant form of the Berry 
phase VI 

&(t) is caIculated using the solutions of 151, from which one can then obtain the ground- 
state Berry phase r. One finds 

where ra is the vortex trajectory, and we work per unit length of the vortex. We see that 
our result reproduces the Berry phase obtained in [3] for a neutral superfluid in the limit 
where e -+ 0. 

We now show how the ground-state Berry phase r enters into the action describing 
the hydrodynamic degrees of freedom of the condensate. We begin with the vacuum-to- 
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vacuum transition amplitude for the system of electrons which can be written as a' path 
integral quadratic in the fermion fields via a HubbardStratonovich transformation 

W = D[Al D[A*l (vac: A( t  = T)/U&", 0)lvac; A ( 0 ) ) .  J 
Here UA(T,  0) = I(exp[-iJ:dr He&; H A  = HF + Le, + L,; Hp is the usual BCS 
Hamiltonian in the presence of a bpotential (Ao, A); Le, is the Lagrangian for the induced 
elechic and magnetic fields (E,  H - Hen); and L, is the condensation Lagrangian with 
density lAlz/2g. The action for the condensate S = SO + shy, is given by 

(vac; A ( T ) I U A ( T , O ) / ~ ~ ~ ;  A(@). (3) ,-iCSo+Sw) = 

So is the action for the bulk degrees of freedom of the condensate; Shyd is the action for 
the hydrodynamic degrees of freedom; and terms in S containing derivatives of the gap 
function higher than second order are suppressed. By factoring UA(T, 0) in equation (3) 
into a sequence of infinitesimal propagations, and appropriately inserting complete sets of 
instantaneous energy eigenkets { ( E n ( t k ) ) ) ,  evaluation of the matrix element in equation (3) 
boils down to consideration of propagation over an infinitesimal time interval. Spatial 
translational invariance, which follows from the assumed absence of pinning sites, ensures 
that /vac; A(0)) evolves. into the instantaneous ground state / ~ C s ( r ) )  of He&). so the 
relevant mahix element is (ECS(r + € ) l U ~ ( ~ ) ( t  + E ,  t)/BCS(t)). One finds [41 

(BCS(I f E)\uA(I) ( t  -k E ,  t ) lBCS( t ) )  = eir'(BcS(t)le-'H'~(f)~IBCS(t)) (4) 
where r is the Berry phase developed in l B c s ( t ) )  due to the vortex motion. The remaining 
matrix element on the RHS of equation (4) can be evaluated [8]; and the contribution from all 
infinitesimal time intervals summed. This yields the following result for the hydrodynamic 
action: 

I1 Shyd = / d t  [-AT+/d2X [ ~ w ~ + N ( O ) ~ ~ +  - 1 { ( f f - f & ) 2  - E 2 }  
8n 

in which the ground-state Beny phase r appears as a consequence of the adiabatic motion 
of the vortex. Here w, = - (h/Zm)[V& + (ZeA)/(f ic)];  & is the gap phase; N ( 0 )  is the 
electron density of states at the Fermi level; & = eA0 + (h/Z) &&; and A, m and c have 
been re-instated. Appropriate to the scenario of an external current passing through a thin 
superconducting film in the flux-flow regime, we assume that the superflow is a combination 
of an applied superflow II = @ / 2 m )  Vp and one that circulates about the moving vortex 
with velocity v,i, = -(h/Zm) V6'. The terms in Sbyd linear in V,B describe the coupling 
of the vortex to: (i) fhe applied superflow U; (ii) the elechic and magnetic fields via (Ao, 
A); and (iii) the superconducting electrons via the Berry phase r. Variation of the coupling 
terms with respect to TO gives the non-dissipative force 

Pshw Fnd = - (W - +o) x i + 0 ($:/A2) 
' 

2 
where CO is the zero-temperature coherence length, and A is the London penetration depth. 
Our result for F.d is identical to the result found by Ao and Thouless [31 in the case of a 
neutral superfluid, and which they argued would also be hue for a charged superconductor. 
In this first calculation we have considered the case of a charged supercondktor explicitly 
(within the context of BCS superconductivity) and found that the Berry phase generated in 
the BCS ground state is responsible for producing the Magnus force contribution to F,d as 
argued by Ao and Thouless [3], and that Fnd is given by the NV result. We go on now to 
the second independent calculation of Fnd. 
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Our starting point (again) is the Bogoliubov equation for the case where a line vortex 
with winding number w = -1  is present. We transform the Bogoliubov Hamiltonian using 
the unitary operator U = exp[iOq/Zl to obtain H B ~ ~  = u3[(iV - 03VS)*/(2) - EF] + AOUI. 
Here the {q] are the2x2Pauli matrices; EF is theFermienergy; andv, = -(1/2)VO-eA 
(h = m = c = 1). We make an eikonal approximation [9] for the Bogoliubov equation 
eigenstates Q, = exp[iq. r]O', where IqI = kF and 0' varies on a length scale L >> ki'. 
To first order in gradients, this gives H B ~ ~  = u3[-q. (iV - u3vs)] + A o q ,  from which we 
obtain the gauge-invariant second-quantized Lagrangian 

L(@) = Y+ [i a, + uj (;a, - eAo) + 0334. (iV - u3vs) - Aou,] W. 
We see that the eikonal approximation made for the eigenstates of HB,,~ near the Fermi 
surface in terms of wavepackets with mean momentum p ~ @  has led to the separation 
of the (3 i- 1)-dimensional NQP dynamics into a collection of independent ( 1  + 1)- 
dimensional subsystems labelled by directions along the Fermi surface @ and which we 
will refer to as @-channels. By construction, both positive- and negativeenergy eigenstates 
(that is, above and below the Fermi surface) cany a mean momentum p ~ @ .  Positive- 

while positive-energy quasiholes have (mean) momentum - p ~ i j  (left-goers, h), and spin 
indices have been suppressed. The adjoint of the NQP field operator in this channel is 
Yi(x) = (@i(z; @), @&E; 6)). The Noether current associated with the global phase 
transformation We -+ exp[-ix]Ya can be written in a pseudo-relativistic notation as 
j@ = Gyp*;  Here I.L = 0, l ;  xo = t ,  X I  q.x; yo E 61, y l  5 -iu2; and c = Ytyo. One 
can then write the density of linear momentum (in the @-channel) as gj(x; @) = p ~ @ i  jo(x); 
and the associated stress tensor as c , (x ;  @) = pp@;&jl(x). Taking the expectation value 
of these operators with respect to the @-channel ground state Ivac)p, and summing over all 
@-channels. gives the ground-state density of linear momentum g,(x) in the condensate 

energy quasiparticles in this channel cmy  (mean) momentum p& (right-goers, &), f 

and its associated stress tensor given by 

Here 01 is the spin index (k). The continuity equation for the condensate linear momentum 
is then 

The mamx element appearing in equation (7) does not vanish, signalling that the condensate 
linear momentum is not conserved (not surprising since the condensate is not isolated). We 
will see shortly that, together with the expected source terms due to gradients in the chemical 
potential, and from the elechic and magnetic fields; there will also be a source term whose 
origin is the vortex topology and which keeps track of the rate at which linear momentum 
is disappearing into the vortex. This topological term will thus give Fnd in this second 
approach. Details of the calculation of M = (vacla,jJ'lvac)a are given in [4]. The result 
is M = (~""F,~)/4n,  where E O ]  = 1; F,, = a,iu - a&: and 20 = eAo - ( l j2)  ate; 
A ,  = 4. v,. Inserting this result for M into equation (7) gives 
- 

argi + ajqj = c, (8) 
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Here CO = k ; / 3 z 2  is the particle density in  the normal phase for the case where the 
chemical potential equals the Fermi energy; and h has been restored. The first .term on 
the RHS of equation (8) is non-vanishing due to the non-trivial vortex topology. The 
local expression of this topology, appropriate for a vortex with winding number o, is 
[a,, a,]@ = 2?roS(n - xo)S(y - yo) ,  where Q is the gap phase and ro = ( X O ,  yo) is the 
position of the vortex. The.LHS of equation (8) can also be evaluated using equations (5) 
and (6)  along with the result 141 (vaclj’[vac)e = P&/2lr .  The results are gj = CO 
zj = ~ C O  ((Tz/Z)a,e - eAo) 6 j j .  Making use of these results in equation (8). together with 
the Josephson equation Q a,Q)/Z = -yo, where is the chemical potential in the vortex 
rest frame which can be written as 110 = p + w:/2 + eAo (p is the chemical potential in 
the lattice frame and m = 1) gives (finally) 

We see that the continuity equation for the condensate linear momentum has yielded the 
acceleration equation for the supeltlow. We find the expected source terms related to the 
hydrodynamic pressure (VP = ps V p ) ,  and the electric and magnetic fields. We also see 
that linear momentum is disappearing from the condensate into the vortex at T&) at the 
rate (p,ho/2)(u, - TO) x 2 per unit length, so 

in agreement with the Berry phase calculation. Our result is also consistent with the 
calculation of NV in [I]. These authors showed that the first three terms in equation (9) 
lead to a flux of linear momentum in towards the vortex at a rate (p,hw/2)(w, - +o) x 2 
which is exactly the rate at which we find it appearing on the vortex, indicating that linear 
momentum is conserved in the combined condensatevortex system. 

In this work we have provided two independent microscopic calculations of the non- 
dissipative force Fnd acting on a line vortex in a type-I1 superconductor at T = 0. Both 
calculations yield the NV form for this force Fnd = (p,ho/Z)(w - +o) x 2. The first 
calculation (inspired by earlier work of Ao and Thouless which determined F n d  via a Bemy 
phase analysis appropriate for a neutral superfluid, and which they argued would also be 
valid for a charged superconductor) shows that the arguments of Ao and Thouless are fully 
borne out in the context of the BCS model for a charged superconductor. The second 
calculation (which does not rely on Berry phases) examines the flow of linear momentum 
in the condensate. The continuity equation for this linear momentum is shown to: (i) yield 
the acceleration equation for the superflow; and (ii) to contain a sink term indicating the 
disappearance of linear momentum into the vortex. F,d follows in this second approach 
from the rate of momentum loss to the vortex. The result obtained is the NV result, and the 
Magnus force (contribution to Fnd) is seen to be a consequence of the vortex topology and 
motion, exactly as it is in classical hydrodynamics. 

I would like to thank Ping A0 for interesting me in this problem and for helpful discussions, 
Michael Stone for interesting comments and discussions, particularly with regard to the issue 
of gauge invariance, T Howell III for constant support, and NSERC of Canada for financial 
support. 

Nom added in proox Two preprints have appeared since this work was completed (Stone: Aitchison et a1 [IO]) 
which also find a gaugeinvariant contribution to the hydrodynamic action that is 6nt order in time derivatives of 
the gap phase. 
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